An improved radial basis-pseudospectral method with hybrid Gaussian-cubic kernels

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stable Gaussian radial basis function method for solving Helmholtz equations

‎Radial basis functions (RBFs) are a powerful tool for approximating the solution of high-dimensional problems‎. ‎They are often referred to as a meshfree method and can be spectrally accurate‎. ‎In this paper, we analyze a new stable method for evaluating Gaussian radial basis function interpolants based on the eigenfunction expansion‎. ‎We develop our approach in two-dimensional spaces for so...

متن کامل

A Hybrid Radial Basis Function-Pseudospectral Method for Thermal Convection in a 3-D Spherical Shell

A novel hybrid spectral method that combines radial basis function (RBF) and Chebyshev pseudospectral (PS) methods in a “2+1” approach is presented for numerically simulating thermal convection in a 3D spherical shell. This is the first study to apply RBFs to a full 3D physical model in spherical geometry. In addition to being spectrally accurate, RBFs are not defined in terms of any surface ba...

متن کامل

Stable Computations with Gaussian Radial Basis Functions

Radial basis function (RBF) approximation is an extremely powerful tool for representing smooth functions in non-trivial geometries, since the method is meshfree and can be spectrally accurate. A perceived practical obstacle is that the interpolation matrix becomes increasingly illconditioned as the RBF shape parameter becomes small, corresponding to flat RBFs. Two stable approaches that overco...

متن کامل

Comparing support vector machines with Gaussian kernels to radial basis function classifiers

The support vector (SV) machine is a novel type of learning machine, based on statistical learning theory, which contains polynomial classifiers, neural networks, and radial basis function (RBF) networks as special cases. In the RBF case, the SV algorithm automatically determines centers, weights, and threshold that minimize an upper bound on the expected test error. The present study is devote...

متن کامل

Compactly Supported Radial Basis Function Kernels

The use of kernels is a key factor in the success of many classification algorithms by allowing nonlinear decision surfaces. Radial basis function (RBF) kernels are commonly used but often associated with dense Gram matrices. We consider a mathematical operator to sparsify any RBF kernel systematically, yielding a kernel with a compact support and sparse Gram matrix. Having many zero elements i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Engineering Analysis with Boundary Elements

سال: 2017

ISSN: 0955-7997

DOI: 10.1016/j.enganabound.2017.03.009